Choose your region

Select the region that best fits your location or preferences.

Choose your site language

This setting controls the language of the user interface, including buttons, menus, and all site text. Select your preferred language for the best browsing experience.

Choose your job languages

Select the languages for job listings you want to see. This setting determines which job advertisements will be displayed to you.

KU Leuven

PhD Position: Driving Reliability: Tackling Uncertainty for Reliability Predictions in Automotive Chiplet Technology

2025-04-15 (Europe/Brussels)
Save job

About the employer

KU Leuven is an autonomous university. It was founded in 1425. It was born of and has grown within the Catholic tradition.

Visit the employer page

Join imec-KU Leuven PhD position. The student will be enrolled in the Department of Mechanical Engineering of KU Leuven and will be conducting research at imec in collaboration with the department.
Website unit

Project

Background: Chiplet technology represents a significant advancement in semiconductor packaging, allowing for the integration of multiple smaller chips (chiplets) into a single package. This approach offers numerous benefits, including improved performance, reduced costs, and enhanced design flexibility. In automotive applications, where reliability and performance are critical, chiplet technology can provide the necessary computational power and efficiency for advanced driver-assistance systems (ADAS), infotainment systems, and other electronic control units (ECUs).

Redistribution Layers (RDL) are essential components in chiplet technology, serving as the interconnects that redistribute the input/output (I/O) connections of the chiplets to different locations on the package. This redistribution is crucial for achieving the desired electrical performance and mechanical reliability. However, the mechanical reliability of RDLs is a significant concern, particularly in automotive applications where the operating conditions can be harsh and variable.

 

Problem Statement: The mechanical reliability of RDLs is influenced by various factors, including material properties, microstructural variations in the metallization, and the stresses induced during operation. In automotive applications, these factors are exacerbated by the wide range of operating temperatures, vibrations, and mechanical loads. Ensuring the reliability of RDLs under these conditions is challenging due to the inherent uncertainties in material properties, microstructural characteristics and operational conditions.

 

As such, the traditional reliability assessment methods may not adequately account for these uncertainties, leading to potential failures in the field, especially for reliability-critical applications such as automotive where failure may result in safety issues. Therefore, there is a need for advanced methodologies that can quantify these uncertainties and provide more accurate predictions of systems reliability under extreme thermal-mechanical operating conditions.


Objectives:

The primary objectives of this research are:

  • To explore the aging mechanisms for RDL including metal interconnect’s fatigue, ratcheting, stress induced voiding and polymer-related reliability mechanisms such as creep, change of properties with aging e.g. embrittlement and delaminations.
  • To quantify the uncertainties in material properties and microstructural variations of metals and changes of mechanical properties of the polymer matrix and their correlation with reliability mechanisms. In addition, by quantifying the uncertainties in fabrication process and the operational conditions e.g. workloads and mission profiles of chiplets in automotive applications.
  • To explore processes and flexible design strategies for stress mitigation to enhance reliability while co-optimizing with electrical performance.

Profile

Type of work: 10% literature and technological study, 60% to develop efficient computational models for predicting the mechanical reliability of RDLs and their design optimization, 30% to design and conduct experiments to calibrate and validate the computational models.

Background: Masters degree in Engineering Science or Technology or sciences. 

Offer

Refer to imec PhD page for details:

https://www.imec-int.com/en/work-at-imec/job-opportunities/phd-at-imec

Interested?

For more information please contact Prof. dr. ir. Houman Zahedmanesh, tel.: +32 16 19 34 75, mail: houman.zahedmanesh@kuleuven.be.

KU Leuven strives for an inclusive, respectful and socially safe environment. We embrace diversity among individuals and groups as an asset. Open dialogue and differences in perspective are essential for an ambitious research and educational environment. In our commitment to equal opportunity, we recognize the consequences of historical inequalities. We do not accept any form of discrimination based on, but not limited to, gender identity and expression, sexual orientation, age, ethnic or national background, skin colour, religious and philosophical diversity, neurodivergence, employment disability, health, or socioeconomic status. For questions about accessibility or support offered, we are happy to assist you at this email address.

Job details

Title
PhD Position: Driving Reliability: Tackling Uncertainty for Reliability Predictions in Automotive Chiplet Technology
Employer
Location
Oude Markt 13 Leuven, Belgium
Published
2024-10-22
Application deadline
2025-04-15 23:59 (Europe/Brussels)
2025-04-15 23:59 (CET)
Job type
PhD
Save job

More jobs from this employer

Showing jobs in English Change settings

About the employer

KU Leuven is an autonomous university. It was founded in 1425. It was born of and has grown within the Catholic tradition.

Visit the employer page